Selected examples for Chapter 6.



EXAMPLE 6.1

A constant but unknown signal is observed in additive Gaussian white noise.
That is

zln] = A+ win|
where A is the unknown signal, w|n| is the noise, and x|n| is the observed
random process. If A and w{n]| are complex, then the noise at any point n has
the complex Gaussian density function

1
fw<W> — r‘_gue w
If & represents the vector of samples z[0], z[1], . .., x[Ns— 1], then the observa-

tions for this example are independent and the joint density for the observations
is a product of marginal densities. The likelihood function is therefore

Ne—1 1 _M
feal@;A)= 11 —e oo
n=0 TO,

and the log likelihood function is

Ng—1 ‘x[n] — A’Q

2
w

In fe.a(x; A) = —N,In(1o?) —

n=0 o



Instead of rearranging this to show the explicit dependence on A we can sim-
ply observe that the log likelihood function is continuous and set the complex
gradient to zero. Applying the formulas in Table A.3 yields

vt (afn] — A)'

Valn fea(x;A) = — X% 5 =0
n=0 0.,
Solving this for A produces the maximum likelihood estimate for the signal:
N 1 Ns—1
A= N nz::O x|n
This is the sample mean of the random process. O
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EXAMPLE 6.3

Assume that the set of observations in an experiment xi,xs,...,Ty are
independent and that the random wvariables x; each have mean m and
variance o2. The sample mean is given by

.1 g
m== X T
The mean of this estimate is
I N 1
Eimt=—>F{r;} = =Nm =
{m} N El {z;} yNm=m
Thus the sample mean is unbiased. The variance of the estimate is given by
. 1 1 o2
Var [m ]—ﬁzzl\/ar[ ]:ﬁNU -

Since the estimate is unbiased and the variance decreases with N, the estimate
is consistent. This implies that as the number of samples gets very large, the
probability that the estimate differs from the ¢rue value of the mean approaches
7€10. ]



EXAMPLE 6.4

Consider a set of observations @ = [zyz9---xy]" from the one-dimensional
Gaussian density function

1 (x—m
e 208

fas;m(x; m) — 277'0'(2)

The log likelihood function for the mean is given by

N (x; —m)?
In fae.n(x;m) = —NIn(y2702) — b (%2 2m)
1= o)

(0]

The derivative of the log likelihood function is

ol fe.pm(x;m) N (x; —m)

2
0

om i=1 %

Since the x; are uncorrelated, the cross terms are zero and the expectation of
this squared quantity is

z{(fﬂn fa%(w;m)ﬂ ) %E{(% —m)? _No? N




Therefore, by the Cramér-Rao inequality
1

E{(alnfa;g(a};é))Q}

the bound on the variance of any unbiased estimate for the mean of the Gaussian
density is

Var m >

=l

Var [m] >

This result can also be achieved using

R 1
Var M > _Z{aﬂnfépeg(w;@)}

since

I fam(@:m) O (%(mi—m))

om? ~ Om 2
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Note from the variance expression in Example 6.3 that the sample mean
satisfies this bound with equality. This result is not really surprising, since it
was shown in Section 6.11 of the text that the sample mean is the maximum

likelihood estimate for the mean of the Gaussian density.

To show that the sample mean satisfies the condition necessary for a minimum
variance estimate, note from above that the derivative of the log likelihood

function can be expressed as

ol fe(x;m) 1 N N ([l N
om o2 2'51(% —m) = 02 ([ﬁ %) m)

or

op O fr(@;m)

N om
where m,,,; is the sample mean. This last equation is in the form of
oln fr.o(x;0)
00

(171 — m) =

dx) — 0 = K(6)
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EXAMPLE 6.5

A d-dimensional real random vector v is described by a Gaussian density

function )

P iy

Given N independent samples of the random vector vV, 0@ ... o) it is
desired to form a maximum likelihood estimate for the mean vector m.

—%(V—m)TC,;Jl (v—m)

The likelihood function for this problem is

N) N 1 L) —m)TCg () —m)

.....

..... o |
El(v@ — m)TCfl_Jl(v@) —m)

Taking the gradient with respect to m and setting it to zero yields

const. —

N .
Vit Fy (0%, 0] = $ Gl —m) = 0



Or, sInce C{Jl 1s a constant,

A

N .

1
TN
This is the sample mean vector.

Let us check the properties of this estimate. The expected value is
1 1
5 _ oWl — _
E{ry} = N@Z1E{ }_Nwm)_m
so the estimate is unbiased. The covariance matrix of the estimate is

£ (i — m)(ny — m)T)} = _E{( ol _ m>) (% () m)T>}

Since the v are independent, this reduces to
1 ' 1
— > Ef(o" —m)(v? —m)" = —C
N2 Zzl {( )( ) } N (%
Since the estimate is unbiased and the covariance of the estimate decreases with
N, the estimate is consistent.
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Finally, let us check the Cramér Rao bound. The foregoing analysis shows

S = Vm1n f’U(l) v(2) ’U(N)-m(v<1>7 ’U(2>, I 7U(N>; m) — g C’l_Jl(rl)(Z) o m)
3 ) 1=1

.....

Since this can be put in the form

N : 1 /N .
s = _;1 Cypl(v') —m) = NCy! (N (.Zlfv(z)> = m) ormy—m = (1/N)Cys

my is evidently a minimum-variance estimate. However, let us proceed to
check the bound explicitly. The Fisher information matrix is

J=E{ss'| = ‘E{(zi Cy' (v - m)) (j% Cu' (v m)>T}

- ' 2 E[0!) —m)) —m)'} Gy
— Cy'(NCyp)Cyp' = NCy'

Thus |
J1l=—C
N

and the wvariance of the estimate and the Cramér Rao bound are
identical. O
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EXAMPLE 6.6

The power y in some unobserved signal is at most equal to the square of the
magnitude x of a signal that is observed. The joint density function for the two

random variables x and y is
0y 0<yv<x% 0<x<]1
fxy(XaY): 0 P =)=

otherwise
[t is desired to estimate the power y from an observation x using both mean-
square and MAP estimation.

The marginal density for z can be computed by integrating as shown below

_ X2 2X2 4
y =X fo(x) = [ 10ydy = by" = bx
0<x<1




The conditional density for y is therefore

10y 2y 2

fy]a:<Y|X) — By — A 0<y< X 2

y

X2

From this sketch it is clear that the maximum of the conditional density occurs
at vy = x*. Therefore

A 9
YmAp = T

The mean of the conditional density is given by

0 2 2y2 2y3 X 2 )
thus
2,
ms — L
Yms =3
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The minimum mean-square error is given by

5
E{(y — Gms)”} = /0 /0 — 2x%)*10ydydx = o 0.0309

To show that this mean-square error is less than say the mean-square error for
the MAP estimate, compute

. 5
E{(y — garap) } /0 /0 2210ydydx = i 0.0926

which turns out to be exactly three times the previous mean-square error. O
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EXAMPLE 6.7

The real random variables x and y have a joint Gaussian density with
parameters

2 2
mgy, — |[ M ]| ny — i{ Oy 637231 ] _ [ 0, ,032;3/0-330'3/ ]|
| my | e R e e e |

where p,, is the normalized correlation coefficient ¢,,/o,0,. The joint density
can be written as

1 _
1 —glx—mg.y—my]Cy

(&
(2)|C,y |2
1 1 ){(X—mx)Q_mey (X—m:c)(y—My)Jr(y—ﬂ;y)Q}

O'xO'y O.y

X—My ‘|

y—=my

fﬂ?y<X> Y> —

The marginal density for  can be found by integration to be
2

1 _ (x=myg)
fa:(X> = \/%O e 0
i



Then by forming the ratio

fa:y(xa Y>
<) = LB\ I)
and simplifying we obtain
1 —nx?
T f— (& 202
fyl <Y|X> \/%O‘
where
o o o
p(x) =my, + ,oxy—y(x —my) = (pxyy> X + (my Pay ymx)
Oy Oy x
and
7= o1 =)
fy[x<y|x)
20
// |
p(x) y
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Since the conditional density is Gaussian, the mean and the maximum occur
at the same place, consequently

. . Oy Uy
Yns — YMAP — ,U< ) /OzcyO_ T+ MMy — /Oasyo_ x

Note that the function p(x) plots as a straight line. It is common in this case to
say that the estimate is a linear function of x although, strictly speaking pu(x)
is not a linear function. Let us instead say that y has a linear dependence on
x. A repetition of this analysis for the complex case shows that the last formula
also applies when x and y are complex.

The mean-square error corresponding to this estimate can be shown to be
equal to the variance o2 of the conditional density (see Problem 6.17). This is
also the lower bound given by

A~ 1 1
Z{(y - 9)2} > E{(alnfaa;(y, >)2} N —Z{aﬂnfazﬂy’ >}

To show this it is easiest to use the second form on the right.
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The logarithm of the joint density is

In fasy(xv y) —
1 — 2 — 2
const. — (x mx) 2ny (37 mx)<y my) + (y my)
2(1 = p2,) o2 0,0y o
Thus
ol fo,(x,y) 1 (z —my)  2(y —my)
9 STy | P T
Yy < R pxy) OO0y gy
and
O°In fo(z,y) 1 { 2 } B 1 1
oy =) o]~ =) o

Substituting this in (6.90) shows that the mean-square error for any estimate
y is lower bounded by
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EXAMPLE 6.9

The random variables in Example 6.6 have the joint density function

oy 0<y <, 0<a <
fay(x,y) = 0  otherwise

Here the linear mean-square estimate of y given x is computed and compared
to the optimal (nonlinear) mean-square estimate computed in that example.

The needed first and second moment parameters are computed as follows:

X2 5 X2 10
My = (/01 ./0 X - 10ydydx = - my, = (/01 (/0 10v2dydx = N
2 1 x2 2 5 9 9 9 5 (5)2 5
— 1 = — — — = — — | — = —
Ele*) = | f, 10x7ydydx s =FE{z"} —m;] -— 13 -
2 1 x? 3 5 9 9 5 5 (1())2 5
— 1 = — — — = — — | — = —
E{y } ./0 ./0 Oy°dydx T o, E{y } m, T 5 0s
x 5
£ oy} = [ 10xy?dyds = >

5 5\ (10 5!



Poy = 5/252)(5/98)  \18

0.0y

Coy J (5/252)? 7
(

Now we can compute
Gy 5/252 10 5 5

a = 2 —5/252:1 and b:my—amx:i—éz—ﬂ
Therefore the linear mean-square estimate is
@lmszaa:+b:az—i
14

The corresponding mean-square error is

5 7 55
Ems = 02(1 — p? _—(1——)_—_0.0312
ms = 0y(1 = pyy) = o2 18) ~ 1764

A comparison to the results of Example 6.6, shows that this is only slightly worse

than the mean-square error for the optimal (nonlinear) mean-square estimate,
which produced &, = 0.0309. O
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EXAMPLE 6.10

Two real random variables ;1 and zo and a related random variable y are
jointly distributed. It is known that if v is defined by

Y
V=T
)
then the mean vector and covariance matrix of v are
[ 1] 7 1 1]
A 10 10 10
|1 _ |1 3 _ 1
my =13 Cv=\|% 1 15
1 1 1 3
9 10 10 10 |

[t is desired to find the best linear mean-square estimate of y using x; and xs.

From the given information it follows that

1
! 1
My =1 my = -
! 4
31 1 -
10 10 10 2
Cx=| | 3] Cay = 1] %~ 10
10 10 10




Therefore to find a form:

S _1 1
{ 10 10| |%] _ { 10
1 3 — |1
i 10192 10
and solve this to obtain )
a; = a9 = —
1 2= 5
The constant b is then given by
T — £ (11
b=m, a Mg =7 3 3]
so the optimal linear mean-square estimate is
o1 N 1 1
S G R
The mean-square error is
7
2 T 1 1
glms_o-y_cgjya_ﬁ_ {ﬁ 10

I — |
DN DO —

DO |— DN |—
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